Some Results on a
Paint Shop Problem for Words

Th. Epping, W. Hochstättler, P. Oertel

Center for Applied Computer Science, University of Cologne

1 Introduction

Motivated by an application in the automobile industry, we present results and conjectures on a new combinatorial problem.

We are given a word \(w = (w_1, \ldots, w_n)\) with letters \(w_i\) of an alphabet \(B\), and a color vector \(f = (f_1, \ldots, f_n)\) with colors \(f_i\) of a color set \(F\). Each \(f_i\) denotes the color of \(w_i\). Whenever \(f_i \neq f_{i+1}\), we say that we have a color change in \(f\).

Problem 1 Paint Shop Problem for Words (PPW)

Given a finite alphabet \(B\), a word \(w = (w_1, \ldots, w_n) \in B^*\), a set \(F\) of colors and a coloring \(f = (f_1, \ldots, f_n)\) of \(w\), find a permutation \(\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\}\) such that \(w_{\sigma(i)} = w_i\) for \(i = 1, \ldots, n\) and the number of all color changes within \(\sigma(f) = (f_{\sigma(1)}, \ldots, f_{\sigma(n)})\) is minimized.

Given an instance \((w; f)\) of PPW, we denote the number of its color changes by \(\gamma(w)\) and the optimal (minimal) number of color changes by \(\gamma^*(w)\). Note, that the initial coloring of a word determines the reservoir of letters available in each color. Thus, we can deal with these reservoirs instead of a color vector. We denote the reservoir of letter \(i\) in color \(j\) by \(V(i, j)\).

Considering the letters \(w_i\) as car bodies, Problem 1 refers to the problem of coloring a given car body sequence in a paint shop. As each color change gives rise to substantial cost and pollution, the minimization of color changes is aspired by the automobile industry for a long time (see [1] and references therein).

1 Supported by Alfried Krupp von Bohlen and Halbach Stiftung

Preprint submitted to Elsevier Science 12 March 2001
Even restricted versions of Problem 1 are \(\mathcal{NP} \)-complete. We restrict to instances of bounded size of \(F \) resp. \(B \) and show by reduction from 3SAT resp. pseudo-polynomial reduction from 3-PARTITION that even in these cases the problem remains \(\mathcal{NP} \)-complete.

Theorem 2 \(PPW \) is \(\mathcal{NP} \)-complete for \(|F| = 2 \).

Theorem 3 \(PPW \) is \(\mathcal{NP} \)-complete for \(|B| = 2 \).

Each instance \((w; f)\) of PPW can be solved by a dynamic program. We only have to pass through \(w \) (letter by letter from the left to the right) and record each feasible coloring up to the current position in a different state.

Theorem 4 An instance of PPW with letters of an alphabet \(B \) and colors of a color set \(F \) can be solved with a space and time complexity of \(O(|F|n|F||B|) \).

Details on the results of this section can be found in [2].

3 \(k \)-regular Instances

Given a fixed integer \(k \geq 1 \), we call an instance \((w; f)\) of PPW \(k \)-regular, if \(V(i, j) = k = \frac{|w|}{|F|} \) holds for all letters \(i \) and colors \(j \). We first restrict to the case of \(k \)-regular instances of bounded size of \(B \) and give an upper bound for the value \(\gamma^*(w) \), starting with a simple lemma.

Lemma 5 Suppose we are given a \(k \)-regular instance of PPW with \(|B| = |F| = 2 \). Then \(\gamma^*(w) \leq 2 \) holds.

We use Lemma 5 to prove Theorem 6 by induction.

Theorem 6 Suppose we are given a \(k \)-regular instance of PPW with \(|B| = 2 \). Then \(\gamma^*(w) \leq 2(|F| - 1) \) holds.

Indeed, besides the dynamic program mentioned in Theorem 4 we know no efficient way to compute an optimal coloring (even for \(k \)-regular instances). When dealing with instances of bounded size of \(F \) instead of \(B \), we can not even show an upper bound for an optimal coloring (like in Theorem 6). Thus, we only present a conjecture for this case.

Conjecture 7 Suppose we are given a \(k \)-regular instance of PPW with \(|F| = 2 \). Then \(\gamma^*(w) \leq |B| \) holds.
Note, that Conjecture 7 is correct for \(k = 1 \). Combining Theorem 6 and Conjecture 7 results in Conjecture 8.

Conjecture 8 Suppose we are given a \(k \)-regular instance of PPW. Then \(\gamma^*(w) \leq |B|(|F| - 1) \) holds.

The following example proves that the bound given in Conjecture 8 is tight if the conjecture is correct.

Example 9 Suppose we are given a \(k \)-regular instance of PPW with a color set \(F \) and an alphabet \(B = \{b_1, \ldots, b_{|F|}\} \) of the form

\[
 w = (\underbrace{b_1 \ldots b_1}_{|F|} \underbrace{b_2 \ldots b_2}_{|F|} \underbrace{\ldots}_{|F|} \underbrace{b_{|B|} \ldots b_{|B|}}_{|F|}).
\]

Then \(\gamma^*(w) = |B|(|F| - 1) \) holds.

Finally, we take a look at \(1 \)-regular instances \((w; f)\) with \(|F| = 2\). One might expect that the natural greedy approach (when coloring \(w \) from the left to the right, keep the actual color as long as possible) produces good results. Example 10 shows that in general this is not the case.

Example 10 Suppose we are given a \(1 \)-regular instance of PPW with \(|F| = 2\) and \(B = \{b_1, \ldots, b_{|F|}\} \) (with \(|B| \) even) of the form

\[
 w = (\underbrace{b_1 \ldots b_{|B|/2}}_{|F|/2} \underbrace{b_{|B|/2} \ldots b_{|B|/2}}_{|F|/2} b_{|B|/2+1} b_{|B|/2+1} \underbrace{b_{|B|/2} b_{|B|/2} \ldots b_{|B|/2}}_{|F|/2-1} b_{|B|-1}).
\]

The greedy algorithm defined above colors the word \(w \) with \(|B| = 2^n = O(n)\) color changes, while the minimal number of color changes is always \(\gamma^*(w) = 3 \).

We end with an open problem.

Problem 11 Given a \(1 \)-regular instance \((w; f)\) of PPW with \(|F| = 2\), compute or approximate the optimal value \(\gamma^*(w) \).

References
